Structure of partially premixed n-heptane–air counterflow flames
نویسندگان
چکیده
To avoid the complexities associated with the droplet/vapor transport and nonuniform evaporation processes, a fundamental investigation of liquid fuel combustion in idealized configurations is very useful. An experimental–computational investigation of prevaporized n-heptane nonpremixed and partially premixed flames established in a counterflow burner is described. There is a general agreement between various facets of our nonpremixed flame measurements and the literature data. The partially premixed flames are characterized by a double flame structure. This becomes more distinct as the strain rate decreases and partial premixing increases, which also increases the separation distance between the two reaction zones. The peak partially premixed flame temperature increases with increasing premixing of the fuel stream. The peak CO2 and H2O concentrations are relatively insensitive to partial premixing. The CO and H2 peak concentrations on the premixed side increase as the fuel-side equivalence ratio decreases. These species are transported to the nonpremixed reaction zone where they oxidize. The C2 species have peaks in the premixed reaction zone. The concentrations of olefins are ten times larger than those of the corresponding paraffins. The oxidizer is present in partially premixed flames throughout the combustion system and there are no regions characterized by simultaneous high temperature and high fuel concentration. As a result, pyrolysis reactions leading to soot formation are greatly diminished. 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.
منابع مشابه
An experimental and numerical investigation of n-heptane/air counterflow partially premixed flames and emission of NOx and PAH species
An experimental and numerical investigation of counterflow prevaporized partially premixed n-heptane flames is reported. The major objective is to provide well-resolved experimental data regarding the detailed structure and emission characteristics of these flames, including profiles of C1–C6, and aromatic species (benzene and toluene) that play an important role in soot formation. n-Heptane is...
متن کاملEffect of Unsaturated Bond on NOx and PAH Formation in n‐Heptane and 1‐Heptene Triple Flames
Various engine and shock tube studies have observed increased NOx emissions from the combustion of biodiesels relative to regular diesel and linked them to the degree of unsaturation or the number of double bonds in the molecular structure of long-chain biodiesel fuels. We report herein a numerical investigation on the structure and emission characteristics of triple flames burning n-heptane an...
متن کاملEffect of multistage combustion on NOx emissions in methane–air flames
Coflow and counterflow methane–air flames are simulated over a complete partially premixed regime in order to characterize the effects of dominant combustion modes (i.e., single-, two-, and three-stage combustion) on NOx emissions. Simulations employ a comprehensive numerical model that uses detailed descriptions of transport and chemistry (GRI-2.11 mechanism) and includes radiation effects. It...
متن کاملStructure of n-heptane/air triple flames in partially-premixed mixing layers
Results of a detailed numerical analysis of an n-heptane/air edge flame are presented. The equations of a low-Mach number reacting flow are solved in a two-dimensional domain using detailed models for species transport and chemical reactions. The reaction mechanism involves 560 species and 2538 reversible reactions. We consider an edge flame that is established in a mixing layer with a uniform ...
متن کاملSuppression of fuel and air stream diluted methane–air partially premixed flames in normal and microgravity
The effects of fuel and air stream dilution (ASD) with carbon dioxide on the suppression of normal and microgravity laminar methane–air partially premixed coflow jet flames were experimentally and numerically investigated. Experiments were conducted both in our normal-gravity laboratory and at the NASA Glenn Research Center 2.2 s drop tower. Measurements included flame topology and liftoff heig...
متن کامل